MATHEMATICS DEPARTMENT

Year 12 MATHEMATICS SPECIALIST

TEST 2: VECTORS

DATE: 3 rd March 2016	Name

Reading Time: 3 minutes

SECTION ONE: CALCULATOR FREE

TOTAL: 25 marks

EQUIPMENT: Pens, pencils, pencil sharpener, highlighter, eraser, ruler, SCSA

formula sheet.

WORKING TIME: 25 minutes (maximum)

SECTION TWO: CALCULATOR ASSUMED

TOTAL: 28 marks

EQUIPMENT: Pens, pencils, pencil sharpener, highlighter, eraser, ruler, drawing

instruments, templates, up to 3 Calculators,

1 A4 page of notes (one side only), SCSA formula sheet.

WORKING TIME: 25 minutes (minimum)

SECTION 1 Question	Marks available	Marks awarded	SECTION 2 Question	Marks available	Marks awarded
1	5		6	9	
2	6		7	7	
3	4		8	12	
4	6				
5	4				
Total	25			28	

Section One: Calculator-free [25 marks				
	This section has five (5) questions. Answer all questions. Write your answers in the spaces provided			
Quest	ion 1 [5 marks]			
A strai	ght line passes through the points $P(2,-3)$ and $Q(5,3)$.			
(a)	Find the vector equation of the line in the form $\mathbf{r} = \mathbf{a} + \lambda \mathbf{b}$.	[2]		
(b)	Find the equation of the line through P and Q in parametric form.	[1]		

Find the equation of the line through $\,P\,{\rm and}\,\,Q\,$ in Cartesian form.

(c)

[2]

Question 2 [6 marks]

The point A lies on the line with equation $\mathbf{r} = 2\mathbf{i} + \mathbf{j} + \lambda(2\mathbf{i} - \mathbf{j})$ and the point B has position vector $4\mathbf{i} - 5\mathbf{j}$. Use a method involving a dot product to determine the position vector of A so that the distance from A to B is a minimum. [6]

Question 3 [4 marks]

Point
$$A$$
 has position vector $\begin{pmatrix} 1 \\ 5 \\ 4 \end{pmatrix}$ and point B has position vector $\begin{pmatrix} 6 \\ 5 \\ -6 \end{pmatrix}$. Find the position

vector of the point P that divides AB internally in the ratio 2:3.

Question 4 [6 marks]

(a) Find a vector perpendicular to the two vectors:

$$\overrightarrow{OP} = \vec{i} - 3\vec{j} + 2\vec{k}$$

$$\overrightarrow{OQ} = -2\overrightarrow{i} + \overrightarrow{j} - \overrightarrow{k}$$
 [3]

(b) If \overrightarrow{OP} and \overrightarrow{OQ} are position vectors for the points P and Q, use your answer to part (a), or otherwise, to find the area of the triangle OPQ. [3]

Question 5 [4 marks]

Points P and Q have coordinates (3,1,-2) and (4,2,-1) respectively.

(a) Write a vector equation for the line passing through P and Q. [2]

(b) Show that the vector 2i - j - k is perpendicular to the line through P and Q. [1]

(c) Write down a vector equation of the plane containing P and Q with 2i - j - k as its normal vector. [1]

NAME:				
Section Two: Calculator-assumed				
This section has three (3) questions. Answer all questions. Write your answers in the spaces provided				
Question 6 [9 marks]				
Two rockets are fired from different positions at the same time. Rocket 1 leaves position $-7i+9j-5k$ km at a velocity of $5i-4j+2k$ km/min and Rocket 2 leaves position $-6i-5j+2k$ km at a velocity of $9i+6j-3k$ km/min. Each rocket leaves smoke and, although the rockets do not collide, their smoke trails do intersect.	aves from			
(a) Find the coordinates of the point at which the smoke trails intersect.	[4]			

Find the position of Rocket 1 three minutes after firing.

[1]

(b)

(c)	Find the shortest distance of Rocket 1 from the smoke trail of Rocket 2, three minutes after firing. Give your answer to the nearest metre.

[4]

Question 7 [7 marks]

(a) The equation of a sphere is given by $x^2 + y^2 + z^2 - 6x + 4y + 8z = 153$. Determine the vector equation of the sphere. [3]

(b) Determine the position vector(s) of the points of intersection between the sphere and the line $r = -3i + 5j + k + \lambda(-2i + j - 2k)$. [4]

Question 8 [12 marks]

Let $r = \begin{pmatrix} 2t+5 \\ -2t-1 \\ t \end{pmatrix}$, $t \in R$, be an equation of line L.

The plane P has a normal vector $\begin{pmatrix} 3 \\ -4 \\ -1 \end{pmatrix}$ and passes through the point A(-1,0,4) .

(a) Show that the point B(9,-5,2) lies on the line L. [2]

(b) Give the normal vector equation of the plane P. [2]

(c) Find the shortest distance that plane P is from the origin. [2]

(a)	Show that the line L meets the plane P at the point $C(1,3,-2)$.	[3]
(e)	Find the angle between the line L and the plane P . (Give your answer	correct to 1
	decimal place.)	[3]